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Abstract—The nature of Internet traffic has changed dramat-
ically within the last few years, where a large volume of
traffic is originated from mobile applications (known as apps),
web based multimedia streaming, computation offloading like
cloud computing and Internet of Things (IoT) etc. These types
applications generate multiple parallel short lived end-to-end
connections. However, the three major requirements of todays’
end-to-end traffic over the Internet, such as (a) support for
mobility of devices, (b) capacity improvement through multi-
path end-to-end transmissions, and (c) support for short-lived
parallel connections, are not substantiated through the widely-
deployed transmission control protocol (TCP). Further, the recent
developments of multi-path TCP (MPTCP) as well as User
Datagram Protocol (UDP) based Google’s Quick UDP Internet
Connections (QUIC) also fail to support all the above three
requirements. As a consequence, in this paper, we develop a new
end-to-end transmission protocol, called Viscous, to support the
above three requirements over the Internet. Viscous is developed
as a wrapper between the application and the transport layer,
that works on top of the UDP and supports end-to-end reliability
as well as congestion control while transmitting short-lived flows
over multiple end-to-end paths. We introduce a number of
novel concepts at Viscous, such as parallel and sequential flow
multiplexing, decoupling of flow and congestion control etc. to
overcome the problems associated with the current transport
protocols. Viscous has been implemented and tested over a variety
of environments, and we observe that it can significantly boost up
the performance of the end-to-end data transmission compared
to TCP, MPTCP and QUIC.

Index Terms—end-to-end transmission; TCP; MPTCP; QUIC;
mobility; short flows

I. INTRODUCTION

The Internet follows the conceptual design from a set of
protocol suites where the major components are network
layer Internet Protocol (IP) and the connection based reliable
transport protocol TCP, which popularly form the TCP/IP
protocol suite. However, during the last decade, it was well
felt that the basic Internet architecture based on TCP/IP is
not suitable for growing demands of extending the Internet
over a large number of smart devices at the edge, that
spans from the smart handheld devices to the network of
low power sensors and actuators, such as Internet of Things
(IoT). The increased number and variety of edge devices have
reduced the scalability and performance of the present Internet
architecture, fundamentally because the nature of data traffic in
todays’ Internet is different from the one that was envisioned
during the development of the TCP/IP protocol suites [17].

Limitations of current transport protocols: While TCP
provides reliable end to end connectivity, it has three
fundamental problems. (a) Mobility: Supporting seamless
communication during mobility is one of the major
requirements for today’s Internet. However TCP is a
connection oriented protocol; a connection in TCP is identified
by the tuple (source IP, destination IP, source port, destination
port). If one of the source or destination IP changes, the
ongoing TCP connection needs to be dropped, and a new
connection needs to be established [18]. (b) Multihoming: If
a device is connected to the Internet via multiple network
interfaces, it is called a multihomed device. Multihomed
devices have the power to transmit or receive data via
multiple paths through multiple physical interfaces. However,
normal TCP cannot utilize multiple interfaces available to a
multihomed device [5]. (c) Short-lived Flows: TCP employs
a slow start phase to handle network congestion. However,
a short-lived flow may fail to come out of the TCP slow
start phase, resulting in underutilization of available network
resources [6]. Interestingly, many of the today’s application
over the Internet, like web browsing, IoT communication,
many smartphone apps, generate parallel as well as sequential
short lived flows.

Related works and their limitations: A number of
recent research works, such as [1], [5], [6], [10], [12],
[13], [18] and the references therein, have revisited the TCP
design fundamentals considering the needs for optimization
at the transport layer, so that the available network capacity
can be fully utilized for both the event driven short-lived
traffic as well as the real time multimedia streaming traffic.
Consequently, the network community has explored end-to-
end protocols to support the above mentioned features at the
transport layer. Multi-path TCP [16] has been developed for
this purpose, where the connection between a sender and a
receiver is established via multiple paths through multiple
interfaces. A large number of recent works, such as [2], [15]
and the references therein, have explored various aspects of
MPTCP and measured its performance over dynamic Internet
traffic scenarios. However, as explored in [11], MPTCP does
not perform well for short flows. To address the issue of
short-lived flows, Dukkipati et. al. [7] have suggested to use
an initial congestion window size of at least 10, so that the
flows can come out of the slow start phase. Later Google



has developed an application layer protocol called SPDY [8],
that can multiplex multiple web requests over a single TCP
connection. However, it suffers from the Head of Line (HOL)
blocking issue; where if one or more packets get lost during
transmission, all the flows need to wait until TCP recovers the
lost packets. To address the HOL blocking issue, Google has
further developed a UDP based experimental protocol called
QUIC [3], [4]. QUIC is similar to SPDY, but it uses UDP
as the transport layer protocol instead of TCP. QUIC can
handle reliability, congestion control and flows control over
the Internet as well as supports mobility. However, it does not
have any control over the path it selects; and the path selection
mechanism is completely dependent on the underlying routing
algorithm. Therefore, QUIC is not a truly multipath protocol
and does not support multihoming.

Contributions of this Paper: As a consequence, in this
paper, we develop a multipath protocol, called Viscous, that
can address the three fundamental shortcomings of the existing
end-to-end protocols – mobility, multi-homing and short-
lived event driven flows. We develop Viscous as a user
level flow management protocol that runs on top of the
UDP protocol, similar to Google’s QUIC, however is bundled
with a number of new features. Viscous can multiplex flows
from multiple applications and decouples flow control from
congestion control, so that an application flow does not suffer
from network bandwidth underutilization problem. Further,
Viscous is free from HOL blocking, and supports reliability
as well as congestion control over unreliable UDP based end-
to-end data transmission. We implement Viscous as a Linux
application library, and test its performance over an emulated
platform. We observe that Viscous can significantly improve
the transport layer protocol performance compared to standard
TCP, MPTCP and QUIC, when large number of short lived
flows are generated from the edge devices.

II. MOTIVATION BEHIND VISCOUS: WHY MPTCP IS NOT
GOOD FOR SHORT LIVED FLOWS?

MPTCP is the most widely explored alternative for TCP,
which supports multiple paths through multiple interfaces,
while providing TCP like congestion control and reliability
features for end-to-end connection. Here, we first explore
whether we can develop a MPTCP like protocol or augment
MPTCP, so that we can support better network utilization for
short flows. For this, we conduct an experiment with the help
of Mininet environment1, where we setup a network with
two multi-homed hosts with two distinct paths between them.
We vary the round trip time (RTT) for the two paths, and then
transfer data between the two hosts. For our experiment, we
have configured the Linux kernel of the hosts with MPTCP
version 0.91 2. We set the path bandwidth as 100 Mbps. We
keep a file at the server, and download that file from the client
through MPTCP based connection. To observe the MPTCP
behavior for various connection types, we vary the size of the
file, and measure the impacts.

1http://mininet.org/ (last accessed: 24 April 2017)
2http://multipath-tcp.org/ (last accessed: 24 April 2017)
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Fig. 1. Percentage of data share between the primary and the alternate paths
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Fig. 2. File download time when short path is the primary path vs when
long path is the primary path

A. Utilization of Network Bandwidth at Alternate Paths for
Short Flows

MPTCP first initiates the connection through one of the
available paths, called the primary path, and then explores the
alternate paths to initiate alternate connections through them.
In the first experiment, we try to look into the amount of data
shares between the primary path and the alternate path. For
this, we keep the bandwidth and latency for both the paths
same, and vary the flow duration by increasing the size of the
file to be downloaded at the client from the server. The results
are plotted in Fig. 1. We can observe from that figure that the
primary path forwards significantly more data compared to the
alternate path. By exploring the connection logs, we find that
by the time MPTCP sets up a connection to the alternate path,
most of the data for a short flow has been transferred over the
primary path. Further, the congestion controls for the primary
and the alternate paths are handled separately, and therefore
the alternate path also needs to go through the slow start phase.

B. Impact of Path Selection for Connection Initiation

We then perform another experiment on path selection,
where the two paths have different RTT. Here, we explore
the effect of primary path selection. Consequently, we vary
the RTT of the two paths, and the results are plotted in Fig. 2.
The two different bars in the graphs show the average file
download time for the two cases – (i) the low RTT path is used
as the primary path, and (ii) the high RTT path is used as the
primary path. We observe that for small size file download, the
performance varies a lot based on the selection of the primary
path.

C. Take Aways

In summary, the lessons learned from the above experiments
are as follows. (a) Connection establishment time is an



overhead for short flows. Further flow based congestion
control algorithms result in the underutilization of network
bandwidth, because every transport layer flow independently
increases its transmission rate from the scratch (by increasing
the congestion window value for TCP or MPTCP), and the
flow may end before its transmission rate reaches to the
network capacity. (b) Connection establishment and path
selection cannot be independent for a multi-path protocol,
because the performance depends on the path selection
mechanism. We need to develop a mechanism where the data
transmission can be initiated simultaneously at multiple paths.

III. VISCOUS: PROTOCOL DESCRIPTIONS

To overcome the limitations of existing transport layer
protocols as discussed in the previous section, we propose
a new end-to-end protocol called Viscous. It is a connection
oriented multipath multi-flow protocol which is not coupled
with the network stack, and work as a wrapper or a middleware
in between the users’ application and the transport layer of
the network protocol stack. The basic design philosophies for
Viscous are as follows.

1) To mitigate the signaling overhead associated with
connection establishment, Viscous multiplexes multiple
flows over a single Viscous connection. This reduces the
connection setup time for short-lived flows.

2) Viscous does not maintain a separate and independent
congestion control for every application flows. Rather,
it maintains a single congestion control mechanism for
a Viscous connection which is a multiplex of multiple
flows. Further, the congestion control is path specific,
that is, congestion is monitored at every path from a
source to a destination, where a Viscous sub-flow is
initiated.

3) To handle HOL blocking problem, Viscous decouples
congestion control from the flow control. Viscous flow
control manages the data generation rate from the
applications, whereas the congestion control maintains
the rate of traffic ingestion into the paths based on
congestion feedback. However, to avoid buffer overflow,
a feedback if forwarded from the congestion control to
the flow control module, whenever necessary.

4) Viscous follows a modular architecture for ease
development of applications. Any Viscous module can
be tuned independently to make it suitable for a specific
requirement. This way, application layer quality of
service (QoS) can be provided with the help of Viscous.

5) Viscous works on top of UDP, similar to Goggle’s
QUIC; therefore it mitigates the transport layer protocol
overhead which is associated with TCP.

6) Viscous supports different types of mobility without
breaking an existing connection. With the help of
a unique client and server specific identifier which
is shared during the initial connection establishment,
Viscous can continue with the existing connection, even
if the server or the client changes its IP address.
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Fig. 3. Flow-Channel architecture in the Viscous protocol. Application sends
and receives data through the flows. Internally, Viscous sends and receives data
using multiple channels over multiple paths.

A. Key Concepts Behind the Design of Viscous

Viscous follows a layered architecture with two different
layers, as shown in Fig. 3. There are two key concepts behind
the design, development, and implementation of Viscous to
support ubiquitous transport of data over any Internet devices
– flow and channel.

1) Channel: Channels are individual connections between
two devices over multiple paths. Paths are defined by source
and destination IP pair. There is one single channel for each
path. To avoid connection time path imbalance like MPTCP,
as we observe in Fig. 2, we initiate all the channels simulta-
neously after connection establishment and before any flows
can start. Connections are established specific to a destination
host whenever an application from a source host requests for a
connection. This connection is shared with other applications
which intend to send data to the same destination host. This
way, flows are multiplexed specific to a destination host.

Here connection means Viscous connection. Channels are
similar to individual TCP connections or sub-flows in the
MPTCP. Each channel has dedicated buffer to provide reliable
packet transmission and have congestion control algorithm not
to overflow the network. Channels are identified by four tuple
of source IP, source port, destination IP and destination port.
All channels are treated as regular, and every channel can
participate in transmitting packets from any flows. However,
based on other properties like RTT and goodput, one channel
can carry more packets than others.

In Viscous, individual application flows do not require
separate connection establishment as the connection has
already been established between the source and the
destination during Viscous flow initiation. Viscous handles
congestion control for every individual paths between a source
and a destination. Therefore, flow specific congestion control is
not required for Viscous, and Viscous maintains path specific
congestion control. This way Viscous avoids slow start for
every individual flows that share the complete path from the
source to the destination. Consequently, channels are persistent
in Viscous, and they do not die out after the completion
of a flow. As mentioned, a channel can carries data from
multiple flows simultaneously by multiplexing them. If one or
both the devices are multi-homed, multiple channels can be
established that share the traffic load and therefore, achieve
better performance.

2) Flow: Flows in Viscous are responsible for data
communication while maintaining the flow-control between
a source and a destination. An application can transmit data
over multiple flows simultaneously. The user application sends



data as byte-streams to the flow, and it also receives data in
the form of byte-streams from a flow. Flow is responsible for
packetizing the byte-stream and sending the packets to the
lower layer of Viscous. Viscous puts packets from flows to
channels, and the channels take care of the congestion control.
This way, we decouple congestion control from flow control
in Viscous design.

This channel-flow decoupled architecture gives Viscous the
power of utilizing multiple paths even for short-lived flows.
Flows do not have to suffer from slow start or connection
establishment overhead. The connection establishment is a
separate event from channel management, and all the channels
between a source and a destination start simultaneously. This
removes the problem of path selection as we observe in
MPTCP. Further, channel gives an option to support mobility.
If one or both the devices change its network address, the
associated channel cannot communicate anymore. Viscous can
discard the affected channels and initiate new channels using
the new network address without any interruption in Viscous
connection (application flows).

3) Channel Scheduler: Viscous channel scheduler
schedules packets from application flows to one of the
channels. A straightforward way to schedule the packets is
to allocate channels to the packets in a round robin way.
However, round robin channel scheduling is not optimal
because different channels can have different network
characteristics in terms of bandwidth, delay or packet loss;
as they are associated with different end-to-end paths in
the network. Therefore we use an acknowledgement (ACK)
driven scheduling for Viscous, that works as the base
scheduler. Here the scheduler schedules a packet to a channel
when it receives the ACKs corresponding to the already
transmitted packets in the channel. Whenever the scheduler
receives an ACK over a channel, it schedules the next packet
to that channel. This provides a self-clocking behaviour to
the channel scheduler. This way, Viscous resolves the issue
of balancing packets among various channels.

B. Connection Establishment: Channels and Flows Creation

Viscous is a connection oriented protocol. So it uses the
client-server architecture for creating and maintaining the
connections. A Viscous server waits for a new connection
from a Viscous client. For each client connection, the server
maintains separate sets of channels and other associated
modules. In Viscous, communication is possible only after
association of the flows to the connections.

Fig. 4 shows the connection establishment and data
transmission events for Viscous. Connection establishment at
Viscous follows a three-way handshake procedure similar to
the TCP connection establishment. However, as mentioned
earlier, Viscous connection establishment is one time and
does not depend on the number of flows between the same
server, client pair. To establish a connection, a Viscous client
sends a synchronization (SYN) packet with a temporary unique
identifier or nonce. The nonce or temporary identifier required
to identify a client if the SYN packet needs to retransmit.

P PS S

SYN

SYN+ACK

1: w1.x1.y1.z1:p1

2: w2.x2.y2.z2:p2

ACK

Initial Connection
Establishment Phase

3-Way Hand-shaking

Data Transfer Phase

Started two channel

Client Server

DAT, seq: 0, channel: 1

DAT, seq: 1, channel: 1

DAT, seq: 0, channel: 2

DAT, seq: 1, channel: 2

ACK, ack: 0, channel: 2ACK, ack: 0, channel: 1

Path P

Path S

Fig. 4. Three-way handshaking between client and server and data transfer
between them. Handshaking can go between any two pairs of interfaces. Here
P is the primary path and S is one of the secondary or alternative paths.

We can use the MAC address of the client as this identifier.
On receiving the SYN packet, the Viscous server generates
a fingerprint for the client and sends a SYN+ACK packet
containing the generated fingerprint. This fingerprint is used
as the connection identifier for the server, client pair, and
every packet between the server and the client includes this
fingerprint. In our implementation, we use an SHA256 hash
function to generate the fingerprint from the client MAC,
server MAC and the current time-stamp used as a unique
nonce. It can be noted that different fingerprint is used for
different connections, and therefore a fingerprint can uniquely
identify a path between a server, client pair. The connection
establishment procedure ends with the Viscous client sending
an ACK packet.

During the connection establishment, the Viscous server
informs all its network addresses to the Viscous client, if
the server has multiple interfaces. So, immediately after the
connection establishment at one channel, the Viscous client
initiates all possible channels to the Viscous server. There is
no requirement to send an extra control packet to complete
the channel establishment. After connection establishment,
Viscous clients become ready to add flows to the channels,
and initiates data transmissions as the applications send data
over the flows.

C. Mobility Support in Viscous

Viscous can support different types of mobility events, as
follows.

1) Connect-time Mobility: A connection can fail whenever
the server or the client changes its address in between the
connection establishment time. With the help of a global name
server, this type of mobility can be supported in Viscous. A
name server is required to get the new address of the server,
when the server changes its IP address. There are two cases
that needs to be handled.

1) Client changes its address just after sending a SYN



packet, Server changes its address just after receiving
a SYN packet: This type of failure is automat-
ically recovered by subsequent retries from the client.
During the retry, the Viscous client is identified via
temporary unique identifier which is used to generate
the fingerprint.

2) Client or server changes its IP address after receiving
the SYN+ACK packet from the server: As SYN+ACK
packet contains the fingerprint, the client can send the
ACK packet to complete the three-way handshake by
sending the ACK packet to the new server address. The
new server address is received with the help from the
global name server. However, the success depends on
how fast the global name server can update the server
IP address against its domain name. If this process fails
after three retries, the client re-initiates the connection.

2) Individual Mobility: Individual mobility event occurs
when one of the interfaces from both the devices change its
network address. This type of mobility can affect a Viscous
connection, only if the affected channel already has some
packets under transmission. The subsequent packets will carry
the new address to the remote device. This does not create a
problem, because the connection is identified by the unique
fingerprint between the server and the client. Further, the new
IP address can be forwarded via other unaffected channels. If
all the channel fails, the the affected application can take help
from the name-server to find out the new address, and the new
channels are creates based on that.

3) Simultaneous Mobility: Simultaneous mobility is rather
complex, which occurs when all the interfaces of the server
or the client change their network addresses simultaneously.
In this scenario, the remote application is not reachable at
all. In this event, all existing channels are affected. Therefore,
the application needs to get the remote addresses from the
name server. Once it get the new addresses, Viscous can
continue with the existing connections as the fingerprint
remains unchanged.

D. Decoupling of Flow and Congestion Control

As mentioned earlier, Viscous decouples congestion and
flow control, where congestion control is associated with the
channel layer, and flow control is associated with the flow
layer. The flow control algorithm uses the receiver advertised
window size (rwnd) to control the rate of traffic flows from
the application, so that the traffic generation rate from the
source application does not overshoot the traffic reception
rate at the target application. The interesting design choice
for Viscous is that if there is congestion in one of the paths
among all the available ones, the traffic generation rate from
the application may not need to be dropped down when other
paths (or channels) have sufficient bandwidth. However, when
congestion is severe (there is congestion in more than one
paths), that feedback needs to be passed to the flow control
module so that the application traffic generation rate can be
shaped accordingly to avoid data overflow from the Viscous

packet buffer. Therefore, we design the following approach for
decoupled flow and congestion controls in Viscous.

In TCP, the effective sender’s window size (wnd) is
computed as follows.

wnd = min(cwnd, rwnd) (1)

where cwnd is congestion window size and rwnd is receiver’s
advertised window size. In the case of Viscous, we separate
congestion control and flow control in two different layers.
Here, every flow maintains its flow window and every
channel maintains its congestion window. However, to satisfy
Equation (1) for providing feedback from the congestion
control to the flow control, we need to maintain effective
sender’s window size as follows.∑

c∈C
wndc = min

∑
f∈F

rwndf ,
∑
c∈C

cwndc

 (2)

where C is set of active channels and F is the set of active
flows. wndc and cwndc denote the effective window size and
the congestion windows size of the channel c respectively.
rwndf denotes the receiver window size for the flow f . As
channels are unaware of flow window size, channel scheduler
needs to communicate this information from flows to channels.
Channel scheduler has to set rwndc, c ∈ C in such a way so
that it satisfy the following equation.∑

c∈C
rwndc =

∑
f∈F

rwndf (3)

Therefore, the calculation of rwndc can be done as follows.

rwndc = αc ×
∑
f∈F

rwndf ; where
∑
c∈C

αc = 1 (4)

We can apply tweaks in the calculation of αc. With simple
fair queuing mechanism, we can use αc as follows.

αc =
cwndc∑
c∈C cwndc

(5)

Equation (4) allows each channel to use the Equation (1)
directly that satisfies Equation (2) for providing congestion
feedback to the flow control module.

IV. VISCOUS API IMPLEMENTATION

We have implemented and tested Viscous protocol using
C++ language in Linux kernel environment with pthread.
We have made the Viscous implementation open-source, which
is available at https://github.com/abhimp/Viscous. Further, due
to space constraints, we are not able to provide the complete
API details in this paper, and additional implementation details
are available at https://abhimp.github.io/Viscous/.

A. Viscous Packet Structure

In Fig. 5, we have depicted the packet structure used in our
implementation. Each packet is divided into three parts. They
are a) mandatory header, b) variable length optional headers
for additional information, and c) data region. The 28 bits
mandatory header has all the common fields required for the
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Ver OHLen ifc-s ifc-d Flags
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Window Size Flow Id

Flow Sequence Number Original Ack Number

Time Stamp

Optional     Headers

10 32 54 76 10 32 54 76 10 32 54 76 10 32 54 76
10 32

Finger     Print

0
4
8
12
16

48
52
56

Fig. 5. Viscous packet header structure

communication. The details of the mandatory fields are as
follows.
Ver: 4 bits protocol version number.
Optional Header Length(OHLen): We have optional headers
of different sizes. This field helps decoder to understand how
many optional headers need to be read before data section can
be reached.
ifc s: 4 bit application defined source interface ID.
ifc d: 4 bit application defined destination interface ID.
Flags: We have used a set of boolean flags. It is similar to
TCP. However Viscous need more flags as it is significantly
different from TCP.
Sequence Number: Unlike TCP, the sequence number in
Viscous is used to identify a packet rather than the byte stream.
We use packet based sequence number because of two reasons
– a) packets are not created by channel handler; and b) as we
multiplex multiple flows, it is easier to track a packet from a
flow than a byte stream from a flow. Sequence numbers are
used by channel handler to provide reliable communication
between two applications. It can be noted that two channels
can have same sequence number.
ACK Number: It is cumulative acknowledgement number like
TCP acknowledgement number. It denotes that the receiver has
received contiguous packet up to this sequence number and it
did not receive next packet until the time it was sent from the
receiver.
Fingerprint: It is Viscous client’s unique ID generated
by the server. Every packet includes this field except the
initial synchronization packet for connection establishment.
In Viscous, packets are discarded if this field is zero or if
there is no connection matching this fingerprint (i.e. invalid
fingerprint).
Flow ID: Flow ID is an important field in a Viscous packet,
which is used by the multiplexer to identify appropriate flow
and to forward received packet accordingly.
Flow Sequence Number: Each flow has its flow sequence
number independent of the sequence number used by the
channel. It requires at the flow layer to reorder the packets at
the receiver side. We use packet based flow sequence number
in Viscous, similar to the sequence number field.
Original ACK Number: Viscous uses selective acknowl-
edgement mechanism. When the receiver receives an out
of order packet, it is supposed to send duplicate acknowl-
edgement packet acknowledging the last conscious packet
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received. The receiver puts the original sequence number of the
packet, which triggers the duplicate acknowledgement. This
field gives sender an indication about packets received at the
receiver side. So, the sender does not resend them again. It
helps Viscous in reducing overall retransmission.
Sent time-stamp: When a sender sends a data packet, it
includes the current Unix timestamp in microseconds (µs).
When a receiver receives a data packets, it includes this
timestamp with the ACK packet. It helps the sender in
measuring the RTT more accurately.

B. Modules and Layers in Viscous

Viscous follows a modular architecture as shown in Fig. 6.
The various modules in Viscous are as follows.

1) Application: An application is the users’ application that
uses Viscous library.

2) Flow Handler: In Viscous, an application directly sends
data to this module and receives from it. Flow handler
packetizes the raw data from the application and sends packets
to the lower layer for further processing. It does not need to
store any outgoing packets, as the channel layer ensures the
reliability. It only keeps track of the packets that it sends, to
control the flow rate. Viscous uses a sliding window based flow
control mechanism based on the receiver advertised window
size. The flow handler also reorders the out of order packets
that it receives from the lower layer. There is a receive buffer
that stores all the out of order packets. This buffer is an array
of packets. The first index of this packet array point to the next
expected packet sequence. Whenever the flow handler receives
one or more contiguous packets from the expected sequence,
it delivers the data from those flows to the application. In
Viscous, there is one independent flow handler instance for
each of the flows.

3) Multiplexer: The multiplexer is responsible for
multiplexing the outgoing packets from multiple flows and
forwarding them to the packet scheduler. It is also responsible
for demultiplexing incoming packets and forwarding them to
appropriate flow handler.

4) Client Handler: Client handler is the manager of
Viscous protocol API. For incoming packets, it checks
the packet validity using the fingerprint generated during
the connection establishment. After validation, it forwards
each incoming packet to the Channel Handler via Channel
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Scheduler for further handling and processing for congestion
control algorithm.

5) Channel Scheduler: It schedules the outgoing packets
to one of the channels. As mentioned earlier, we use ACK
driven channel scheduling. Whenever a channel is ready to
send packets, it asks the Channel Scheduler for new packets
to be sent. A smart scheduler can decide which packet to be
sent through a channel based on its algorithm to achieve high
throughput with lower latency.

6) Channel Handler: Channel handler is responsible for
reliable communication and congestion control in the network.
In the Viscous implementation, we use the TCP New Reno
congestion control [9] algorithm with the following modifi-
cations. In Viscous, the channel handler handles packets, not
TCP like byte streams. So, we use packet based sequence
number because it is easier to track a packet from a flow than
a byte stream from a flow when we multiplex multiple flows.
Further, in the Viscous congestion control, each ACK contains
the sequence number of the packet for which this acknowl-
edgement is triggered. This gives a similar effect as TCP
selective acknowledgement (SACK) [14] mechanism. Further,
as flows are multiplexed, we have modified the fast recovery
phase describe in RFC2581 [9] with SACK modifications.
After receiving the first partial new ACK, the channel handler
sends all the unacknowledged (via SACK or original ACK in the
packet header) packets up to the received acknowledgement
number for each duplicate ACK. This modification reduces
retransmissions due to timeout events when a series of packets
get lost in the network.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of Viscous, we have performed
several experiments over Mininet network emulation
platform. We have used the network topology as shown in
Fig. 7. In the topology, H1 and H2 act as the Viscous
server and the Viscous client, respectively, or vice-versa.
Rest of the hosts generate background traffic to increase the
traffic load in the network. We compare the performance of
Viscous with following protocols – (a) TCP Cubic with the
optimization in [7], MPTCP (version 0.91), and QUIC (open
source implementation of proto-quic3).

A. Experimental Setup

The various hardware and operating system level parameters
used in our experimental setup are as follows. We have used

3https://github.com/google/proto-quic (last accessed: April 25, 2017)

Oracle VitualBox to create virtual machines which have been
configured with Mininet kernel to support network interface
virtualization. The guest machine configuration is as follows
– single core Intel i7-5500U 64bit CPU with clock speed of
2.40 GHz, RAM: 8GB. The host machine configuration is as
follows – Intel Genuine i7-5500U 64bit CPU with clock speed
of 2.40GHz, RAM: 8GB with 250GB Solid State Drive. We
have used version 2.2.2 of Mininet kernel have been used to
develop our test setup. In our virtual machine configurations
for test setup, the guest operating system is Ubuntu 14.04.4
LTS, whereas the host operating system is Ubuntu 16.04.1
LTS. The link bandwidth for every paths of the topology has
been kept as 50 Mbps, and we vary the RTT of the paths from
16ms to 320ms. The background traffic is generated using
iperf TCP sessions from every host shown in the topology
of Fig. 7, attached with the various subnets. Next we present
the results and observations from various test scenarios as
performed over the two topologies.

B. Performance for Short-lived Flows

In this experiment, we have explored the performance of
QUIC, TCP, MPTCP and Viscous for a large numbers of short-
lived flows, which is the major drawback of the existing end-
to-end protocols. For every setup, we have sent flows using
multiple parallel threads to generate multiple simultaneous
flows. For each thread, we have generated 100 back-to-back
flows; and have varied the flow duration (application traffic
generation time) based on an exponential distribution with
mean flow duration of 25 seconds. The number of parallel
threads, those generate the simultaneous flows, have been
varied from 1 to 20. First, we observe the average flow
completion time for all the flows, as shown in Fig. 8 and
Fig. 9 for without background flows and with background
flows,respectively. From the figure, we can see that Viscous
performs much better when multiple short-lived flows are
transferred over the network. QUIC in this scenario does not
perform good, because it fails to utilize multiple interfaces
available in the network. Further it multiplexes the sequential
flows from the same thread, but treats parallel flows from
different threads as separate flows and maintains separate
slow start for them. We have observed that when the channel
condition is very good (RTT is low), the performance of
QUIC is even worse than TCP. By analysing the trace, we
found that many of the QUIC connections get stalled due to
coupled congestion control and flow control over multiplexed
flows, and the average flow completion time gets severely
affected. Here Viscous takes the advantage by decoupling flow
control from congestion control, and improves the end-to-end
performance.

MPTCP suffers from the path imbalance problem as
discussed earlier, and TCP Cubic can not utilize multi-homing
capacity for the flows. To analyze the effect of short-lived
flows, we compare the congestion window evolution for TCP
and Viscous for a specific case, as given in Fig. 10, when
RTT is 16ms with 5 parallel threads. We observe that the
average congestion window for TCP is significantly less.
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Fig. 8. Average flow completion time for short flows without background traffic
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Fig. 9. Average flow completion time for short flows with background traffic
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Fig. 10. Congestion window evolution

The congestion window evolutions for Viscous along the two
paths (R6-R2-R4-R8, termed as Viscous-0, and R7-R1-R3-
R9, termed as Viscous-1) have been shown, and in both
the paths, Viscous can achieve a significant higher values of
the congestion window. Consequently, Viscous sub-flows can
utilize the available bandwidth at the paths in a significantly
better way for multiplexed short-lived flows.

Next, we observe the average goodput of the flows for the
four different protocols under the same scenario, as shown in
Fig. 11 and Fig. 12, for without background flows and with
background flows, respectively. Similar to the flow completion
time, we observe that the goodput of Viscous is higher
than all other protocols. Viscous can utilize the capacity of
multiple paths through flow multiplexing and maintaining
connection specific congestion window evolution over the
time; and therefore it attains higher goodput compared to
other competing end-to-end protocols. Further, we observe that
the goodput for Viscous is significantly boosted up compared
to other protocols, when RTT of the paths is high. This
indicates that Viscous overshoots the performance compared
to other protocols when network condition is poor. QUIC,
TCP and MPTCP can not cope up with the poor network
condition, whereas Viscous can effectively utilize the available

capacity under all the scenarios. The reason behind this better
performance is the Viscous channel scheduler, that uses a self-
clocking mechanism to schedule and trigger the transmissions
over multiple channels based on the ACK packets. This self-
clocking helps in proper utilization of the channels even under
poor RTT conditions.

C. Performance for Long Flows over a Single Path – Worst
Case Performance of Viscous

Till now we have tested the performance of Viscous for
short-lived flows. To compare its performance for long flows,
we have performed this experiment, where we send the various
size of files from the host H1 to the host H2 over Topology-1.
We plot the time required to transmit a complete file over the
network using TCP and Viscous when both use only one path
in the network. The results are plotted in Fig. 13. From this
figure, we observe that the performance of Viscous is almost
equal for long flows over a single path, which we consider as
the worst case performance of this protocol. This experiment
shows that in the worst case, Viscous performs as good as
TCP Cubic, however, under the scenarios with multiple short-
lived events triggered or user generated flows, Viscous can
significantly boost up the end-to-end performance.

VI. CONCLUSION

Considering the limitations of current transmission
protocols for todays diverse device and traffic characteristics,
in this paper, we have developed Viscous that provides a
middleware between the user application and the transport
layer to handle end-to-end network characteristics. Viscous
is completely compatible with the current network protocol
stack, while it provides significant performance boost in
the application throughput. It is developed on top of the
UDP along with a set of novel features to support mobility,
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Fig. 11. Average goodput for short-lived flows without background traffic
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Fig. 12. Average goodput for short-lived flows with background traffic
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Fig. 13. Performance of Viscous and TCP for long Flows over a single path

multi-homing and short-lived parallel and sequential flows.
From the prototype implementation and performance analysis
over an emulated environment, we show that the worst case
performance of Viscous is similar to TCP, which indicates
its applicability for a wide range of applications. In future,
our target is to enhance Viscous with application layer QoS
support to make it an alternate for both non-real time and
real time traffic transport.
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