

Federated Adaptive Bitrate Live Streaming over Locality Sensitive Playback Coalitions

Abhijit Mondal Sandip Chakraborty Indian Institute of Technology Kharagpur

NAI 2020

August 03, 2020

Dynamic Adaptive Streaming over HTTP(S)

Video Streaming

Video Streaming – Live

- Nearby player discovery
 - No Internet uses overhead
 - Share among players from same LAN
- A scheme to share video data
 - \circ No free rider
 - Improve QoE
 - Form coalition
 - Share within the coalition only
 - Download and share policy

1. LAN broadcast

a. Players are in same broadcast domain

2. Proximity server

- a. external server
 - i. Provides potential neighbours
- b. ALTO server
 - i. Determine feasibility of communication

Streaming Coalition Formation

Streaming Coalition Formation

Select Next Downloader Become a Downloader Broadcast the next downloader Get the segment number (S_i) to be downloaded and next segment number Downloader Selection and **Quality Selection** Select Bitrate Q_i for S_i Start downloading segment S_i with quality Q_i

$$P_i = \operatorname*{argmin}_{x \in G_p} \left(\mathcal{I}_x - \mathcal{D}q_x - \mathcal{D}l_x \right)$$

Downloader (P_i) selection

- 1. Maximum *idle* time (I_r)
- 2. Minimum pending downloads (Dq_x)
- 3. Minimum remaining download completion time (Dl_x)

- Quality Selection
 - Increase quality additively (1 step at a time)
 - Decrease quality **multiplicatively**
- Advantages
 - No **sudden changes** in quality
 - Improves QoE
 - Low stalls

- We developed **event driven simulator** based of pensieve simulator
- Multiple player can be **simulated simultaneously**
- Players communication is emulated based on a **reference network**
- All the modules are **plugable**
- We used prewritten ABR module from **DASH.JS**
- Mahimahi^[1] network trace are use to emulated link condition between CDN and player

[1]. R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Balakrishnan, "Mahimahi: Accurate record-and-replay for HTTP," in USENIX ATC, 2015, pp. 417–429.

- Compared ABRs like BOLA^[2], MPC^[3] and Pensieve^[4] and distributed hash table (DHT) based peer assisted streaming system^[5]
- Live streaming emulated with **58 dashified videos** with total duration of **45** hours
- Used **autonomous system data** from **SNAP** database as reference network^[6]
- Broadband traces from FCC^[7] and 3G/HSDPA mobile dataset from Norway^[8] used as trace to simulate link between player and CDN

[2] K. Spiteri, R. Sitaraman, and D. Sparacio, "From theory to practice: Improving bitrate adaptation in the DASH reference player," in ACM MMSys, 2018, pp. 123–137.

[3] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, "A Control-theoretic Approach for Dynamic Adaptive Video Streaming over HTTP," in ACM SIGCOMM, New York, New York, USA, 2015.

[4] H. Mao, R. Netravali, and M. Alizadeh, "Neural Adaptive Video Streaming with Pensieve," in ACM SIGCOMM, New York, USA, 2017.

[5] H. Shen, Z. Li, and J. Li, "A DHT-aided chunk-driven overlay for scalable and efficient peer-to-peer live streaming," IEEE TPDS, vol. 24, no. 11, pp. 2125–2137, 2013.

[6] J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graphs over time: Densification laws, shrinking diameters and possible explanations," in ACM SIGKDD, 2005, pp. 177–187.

[7] F. C. Commission, "Raw Data - Measuring Broadband America - Eighth Report," https://www.fcc.gov/ reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-eighth, 2018, [Online; accessed 29-March-2019].

[8] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, "Commute path bandwidth traces from 3G networks: Analysis and applications," in ACM MMSys, 2013, pp. 114–118.

QoE Measurement

$$QoE = \frac{\alpha}{N} \sum_{n=1}^{N} \mathcal{F}(\mathcal{Q}_n) - \frac{\beta}{N-1} \sum_{n=2}^{N} |\mathcal{F}(\mathcal{Q}_n) - \mathcal{F}(\mathcal{Q}_{n-1})| - \gamma \mathcal{T}_n$$

 $\gamma = 4.3$

 \mathcal{Q}_n : bitrate level of nth segment \mathcal{T}_n : Overall stall

 α,β and γ are normalization coefficient We use $\alpha=\beta=1$

$$\mathcal{F}(\cdot)$$
: Quality function. We use F(Qn) as the bitrate in mbps

Average bitrate played by each player

Average bitrate varied for each player

player

player (each segment)

Number of requests

Data downloaded from (CDN) server

Compare the benefit of FLiDASH over existing systems

$$Ben(S) = \frac{\mathcal{G}_f - \mathcal{G}_o}{|\mathcal{G}_o|}$$

- \mathcal{G}_f : Instant value of FLiDASH
- \mathcal{G}_o : Instant value of system ABR

- We change the coalition-size from **3 to 10**
- Measure the **QoE**, data transfer by each players and fairness among players
- We measure fairness using Jain fairness index^[9] on QoE

Results: Effect of Coalition Size

Overall QoE per player

Average data transfer per player Jain fairness index in terms of QoE

- Change **communication delay threshold** from **4 ms to 256 ms**
- Measure the **average bitrate** and **QoE**

Average bitrate played by each player

Experience

Overall QoE achieved by each player

- A middlebox-free collaborative adaptive live streaming system
- Better overall QoE while reducing the network traffic
- A highly-scalable architecture for mass-scale live streaming
- Incurs low over-head to the backbone network

Thank You