
AU
TH

OR
S’
CO

PY

System Call Interception for Serverless Isolation
Nishant Somy

IIT Kharagpur, India
somy1997@gmail.com

Abhijit Mondal
IIT Kharagpur, India

abhijit.manpur@gmail.com

Bishakh Ghosh
IIT Kharagpur, India

ghoshbishakh@gmail.com

Sandip Chakraborty
IIT Kharagpur, India

sandipc@cse.iitkgp.ac.in

CCS CONCEPTS
•Networks→Cloud computing; • Software and its engineer-
ing → Process management.

KEYWORDS
Serverless computing, function isolation, zero cold-start

ACM Reference Format:
Nishant Somy, Abhijit Mondal, Bishakh Ghosh, and Sandip Chakraborty.
2020. System Call Interception for Serverless Isolation. In Annual conference
of the ACM Special Interest Group on Data Communication on the applica-
tions, technologies, architectures, and protocols for computer communication
(SIGCOMM ’20 Demos and Posters), August 10–14, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3405837.3411391

1 OVERVIEW
Serverless functions [6, 9, 13, 14], like AWS Lambda [3] or Google
Cloud Functions [7], are new techniques for running short-lived
workloads over a cloud, which are particularly preferred by users
for their easy deployment, fine-grained billing and automatic scal-
ing. Unlike traditional cloud offerings such as VMs and containers,
these functions are stateless, where each function execution starts
with a fresh state of memory, disk, and other resources. A multi-
tenant serverless cloud platform has two primary components, a
gateway controlled by the cloud service provider (CSP) and the
user functions which are users’ programs. A typical serverless
function execution is stateless and involves broadly the follow-
ing steps: (1) User request is received by the gateway, (2) Gateway
executes the function and passes the request arguments, (3) The
function performs necessary computation, (4) Optionally, it can call
other functions through the gateway or access external Database,
and (5) It returns the result to the user.

Thus for supporting multi-tenancy, CSPs are required to en-
sure isolation for the user functions in three aspects [4, 12] - (a)
function-function isolation: one user function cannot access the
memory, files, or any resource of another function, (b) function-
host isolation: access to host resources and functionality like sys-
tem file access, accepting network connections, process execution
are not allowed by the user functions. (c) restriction in resource
utilization: there must be a limit in CPU/memory/disk usage so
that one function workload cannot hamper the execution of other
functions. Moreover, each function has a limited maximum duration
of execution (e.g. 15 minutes for AWS Lambda). Existing serverless

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8048-5/20/08.
https://doi.org/10.1145/3405837.3411391

platforms rely upon VMs and containers-based sandboxing, which
were originally designed to support multi-tenancy for traditional
web-applications. VMs use hypervisor based virtualization, whereas
containers share the host OS kernel and provide isolation by using
namespaces and control groups (cgroups). While both these tech-
niques provide the isolation and security guarantees, they come
with very high overheads in terms of cold-start latency and resource
overheads [5]. Existing works [1, 2, 5, 10, 11] primarily try to op-
timize the VM and containers for serverless operations, through
lightweight VMs [1] or containers [2, 5, 10, 11], therefore cannot
eliminate the cold-start latency completely.

In contrast, we take into consideration the properties of server-
less functions and their limited access to resources to design and
implement a novel isolation architecture from ground up. Our pro-
posed sandbox architecture, called NOVA, is designed specifically
for serverless workloads, and uses OS level system-call monitoring
and whitelisting to eliminate any cold-start latency as well as re-
source overheads. Unlike programming language specific isolation
like V8 isolates used in Cloudflare1, NOVA is language agnostic.
Results demonstrate that NOVA sandboxing has zero cold-start
latency and negligible I/O overhead.

2 SYSTEM DESIGN
We propose NOVA sandboxing to achieve function isolation with
zero cold-start latency andminimal resource & I/O latency overhead
by exploiting a fundamental principle of the OS - system calls.
System calls are the methods to transfer control from the user-
space to the kernel-space, and thus the only way for a process to
interact with other processes and access the hardware & software
resources in the host system. To support isolation, NOVA monitors
system calls originated from a function and selectively allows them
based on the properties of a serverless function. However, using
such technique comes with its own set of challenges. Some system
calls are essential to start execution of the function, whereas, some
are required by them to load the necessary software libraries and
resources. Moreover, not all host processes should be affected, and
this isolation should only affect the serverless workloads. Another
major problem is passing user input and retrieving the result from
these functions while preserving the isolation. To handle these
challenges NOVA uses two primary components (Figure 1) - (a)
NOVA Interceptor - module to isolate the function execution
environment from the rest of the system. (b) NOVA Gateway -
for receiving user requests and executing the appropriate function
with proper arguments.

2.1 NOVA Interceptor:
The task of the NOVA Interceptor is to restrict serverless functions’
access to host resources by blocking its system calls for isolation,

1https://workers.cloudflare.com/ (accessed March 25, 2021)

https://doi.org/10.1145/3405837.3411391
https://doi.org/10.1145/3405837.3411391
https://workers.cloudflare.com/


AU
TH

OR
S’
CO

PY

SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA Somy et al.

Figure 1: System architecture

while still allowing some calls to preserve its functionality. NOVA
Interceptor filters system call from the kernel space instead of the
users-space. The Linux kernel has a subroutine to handle the soft-
ware interrupt triggered by the user-space program acting as the
single point entry for the system call to the kernel. Although chang-
ing this subroutine to support our filtering feature can solve the
problem, this will require a kernel upgrade. However, the subrou-
tine uses a system call table to call the appropriate handler
for the system call. Therefore we exploit the system call table
and modify its entries from a Loadable Kernel Module (LKM) for
changing the behaviour of each system call. We implement our
own proxy handlers for each call which decides what system calls
to allow. NOVA Interceptor should only intercept the calls from
the serverless workloads, and not from other host processes. So,
the proxy handler selectively processes some calls by matching
the parent process id (ppid) of the calling process with predefined
process id (pid) of the NOVA Gateway. If it does not match (for
host processes), the proxy handler immediately calls the original
system call handler.

The LKM restricts file system access by blocking open, stat,
fstat, and lstat system calls. For network isolation, we allow
only TCP connection in client mode from the serverless function
by restricting socket system call to stream type socket and block
bind, listen, accept and setsockopt system calls. This abides by
the serverless property in which the functions can only be accessed
through the CSP’s gateway. NOVA restricts all kind of inter-process
communication. The LKM blocks pipe, mkfifo, shmget and other
system calls related to IPC. It is also essential to restrict process
operation from the function by restricting system calls like fork,
exec, clone. However, we allow the kill system call to send signals
to itself only. Some system calls are dependent on other system
calls (like read, write, etc.), so we do not need to block them
explicitly. The complete list of the blocked system call is listed at
https://github.com/ghoshbishakh/novaisolation.

2.2 NOVA Gateway:
NOVA uses a Common Gateway Interface (CGI) as the gateway,
with somemodifications to supportNOVA Interceptor. CGI suites
this particular use-case since the input and output from the server-
less functions are passed through environment variables and stdout
respectively, both of which are not blocked by NOVA Interceptor. It
is developed in such a way that it first configures the LKM with its
own pid and isolation configuration. After that, it starts listening
for the user requests. Whenever a new request arrives, it executes
the corresponding function using CGI and responds the output, as
shown in Figure 1. The CGI runs the executable for each function
request in a new child process. As the LKM blocks all kinds of open

system calls, the function can not load any dynamically loadable
libraries. Instead of partially allowing open system call, we avoid
all kinds of dynamic linking by generating a statically linked func-
tion program only, thus preserving the properties of a serverless
function. Although the executable size is a little large, it saves us
from solving the problem of opening a shared object from the disk.

Open
Lambda

NOVA
0

50

100

150

200

250

Re
sp
on

se
 T
im

e 
(m

s)

(a)

Open
Lambda

NOVA
2.5

5.0

7.5

10.0

12.5

15.0

Re
sp
on

se
 T
im

e 
(m

s)

(b)

No
Intrcpt

Intrcpt

4

6

8

10

Re
sp

on
se

 T
im

e 
(m

s)

(c)

Figure 2: Response time during (a) cold-start and (b) normal
operations; (c) Overhead due to system call interception

3 PRELIMINARY RESULTS
To evaluate NOVA, we have implemented it on Linux kernel 4.15 as
an LKM, and the performance is compared with OpenLambda [8]. A
VMwith 2 vCPUs and 3GBmemorywas emulated as the platform to
host the function. The workload was a simple program for finding
the 𝑛th Fibonacci number, with 𝑛 given as a user input through the
query string of anHTTP request.When the NOVA gateway receives
the HTTP request, it prepares the set of environment variables for
the function and the QUERY_STRING variable. The nova gateway
creates two (POSIX) pipe to send and receive request-response data
from the function and calls fork to create the process. After that,
the new process duplicates the file descriptors from the pipe to
the stdin and stdout using the dup2 system call and closes the
original file descriptors of the pipe. At this point, the gateway is
ready to load the function using execv. The LKM does not block any
system call before the execv call; however, after the execv call, the
LKM starts monitoring the system calls. As the Fibonacci function
is straightforward, it does not require any system call as such.
However, to return the results, it needs to call the write system
call on stdout. At the end, the function calls exit to terminate
the execution. NOVA interceptor does not block write and exit
system calls.

For each experiment, about 100 user requests were used. Fig-
ure 2a shows significant reduction in cold-start latency since NOVA
effectively removes any cold start phase; for normal operations
(Figure 2b) the latency is almost similar. To analyze the reason
behind the marginal increase in normal operation latency, we per-
formed the same experiment by disabling the NOVA Interceptor
while keeping everything unchanged. Figure 2c indicates that this
overhead is entirely from intercepting and processing system calls.
In terms of memory usage we found that NOVA sandboxes use only
∼6MB, while OpenLambda functions use ∼35MB. Thus these initial
results suggest that NOVA is lightweight with negligible overhead
compared to container-based serverless platforms.

https://github.com/ghoshbishakh/novaisolation


AU
TH

OR
S’
CO

PY

System Call Interception for Serverless Isolation SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA

REFERENCES
[1] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and

Diana-Maria Popa. 2020. Firecracker: Lightweight Virtualization for Serverless
Applications. In 17th USENIX NSDI. 419–434.

[2] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt.
2018. SAND: Towards High-Performance Serverless Computing. In USENIX ATC.
923–935.

[3] Amazon. 2020. AWS Lambda. https://aws.amazon.com/lambda/. (2020). [accessed
March 25, 2021].

[4] Ankit Bhardwaj, Meghana Gupta, and Ryan Stutsman. 2020. On the Impact of
Isolation Costs on Locality-aware Cloud Scheduling. In USENIX HotCloud.

[5] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen. 2020. Catalyzer:
Sub-millisecond Startup for Serverless Computingwith Initialization-less Booting.
In 25th ASPLOS. 467–481.

[6] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From laptop to lambda:
Outsourcing everyday jobs to thousands of transient functional containers. In
USENIX ATC. 475–488.

[7] Google. 2020. Cloud Functions. https://cloud.google.com/functions/. (2020).
[accessed March 25, 2021].

[8] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. 2016. Serverless computation with OpenLambda. In
USENIX HotCloud.

[9] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[10] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov. 2019.
Agile cold starts for scalable serverless. In USENIX HotCloud.

[11] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R.
Arpaci-Dusseau. 2018. SOCK Rapid task provisioning with serverless-optimized
containers. In USENIX ATC. 57–70.

[12] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley Kennedy, Gabriel Parmer,
Timothy Wood, and Alain Tchana. 2020. Fine-Grained Isolation for Scalable,
Dynamic, Multi-tenant Edge Clouds. In USENIX ATC. 927–942.

[13] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
implications of function-as-a-service computing. In Proceedings of the 52ndAnnual
IEEE/ACM International Symposium on Microarchitecture. 1063–1075.

[14] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. 2018. Peeking behind the
curtains of serverless platforms. In USENIX ATC. 133–146.

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/

	1 Overview
	2 System Design
	2.1 NOVA Interceptor:
	2.2 NOVA Gateway:

	3 Preliminary Results
	References

